Carbon-carbon coupling reactions on triruthenium clusters: synthesis and structure of $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\eta^{3}-\mathrm{PhCCCC}(\mathrm{H}) \mathrm{Ph}\right]\left[\mu_{2}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ and $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)(\mathrm{CO})_{7}\left[\mu_{3}-\eta^{3}-\mathrm{PhCCCC}(\mathrm{H}) \mathrm{Ph}\right]\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$

Vincent Ferrand ${ }^{\text {a }}$, Céline Gambs ${ }^{\text {a }}$, Nadine Derrien ${ }^{\text {b }}$, Carsten Bolm ${ }^{\text {b }}$, Helen Stceckli-Evans ${ }^{\text {a }}$, Georg Süss-Fink ${ }^{\text {a.* }}$
"Institut de Chimie, Uni erersité de Neuchâtel, Neuchâtel, CH-2000, Switzerland
${ }^{\text {b }}$ Institut fïr Organische Chemie, RWTH Aachen, Aachen, D-52058, Germany

Received 30 June 1997

Abstract

The reaction of the electron-deficient cluster ($\mu_{2}-\mathrm{H}^{-1} \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (1) with para-nitrotolane gives, with coupling of two alkyne units and elimination of the para-nitrophenyl fragment, the trinuclear complexes $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\eta^{3}-\mathrm{PhCCCC}(\mathrm{H}) \mathrm{Ph}\right]\left[\mu_{2^{-}}\right.$ $\mathrm{NS}(\mathrm{O}) \mathrm{MePh}]$ (2) and $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)(\mathrm{CO})_{7}\left[\mu_{3}-\eta^{3}-\mathrm{PhCCCC}(\mathrm{H}) \mathrm{Ph}\right]\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (3). The resulting organic moiety, coordinated as $\mu_{3}-\eta^{3}-5 \mathrm{e}$-donor, is best considered as a butenynyl ($\left.\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}\right)$ ligand in 2 and as a butatrienyl $(\mathrm{PhC}=\mathrm{C}=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})$ ligand in 3. From the reaction shiature, the two isomeric vinyl complexes $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)_{2}(\mathrm{CO})_{6}\left[\mu_{2}-\eta^{2}-\mathrm{PhC}=\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mu-\mathrm{NO}_{2}\right)\right]\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (4a) and $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)_{2}(\mathrm{CO})_{6}\left[\mu_{2}-\eta^{2}-\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mu-\mathrm{NO}_{2}\right)-\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}\right]-\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right](4 \mathrm{~b})$ comvexes can also be isolated. © 1997 Elsevier Sience S.A.

Keywords. Clusters: Ruthenium: Alkynes; Carbon-carbon coupling: Crystal structures

1. Introduction

Reactions involving carbon-carbon bond formation in transition metal clusters are of considerable interest because of their potential for generating new and unusual types of hydrocarbon fragments [1,2]. Reactions of this type are also considered as models for related processes occurring on metal surfaces [3-5]. In particular, alkynes can be coupled in the coordination sphere of transition metal clusters to give $\mathrm{C}_{4}, \mathrm{C}_{6}, \mathrm{C}_{8}$, and C_{12} hydrocarbyls [6-37]. Thus, the cluster $\mathrm{Cp}_{2}^{\prime} \mathrm{Mo}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{4} \mathrm{~S}_{3}$ reacts with pienylacetylene, in a first step to give the $\mu_{3}-\eta^{2}$-alkyne cluster $\mathrm{Cp}_{2}^{\prime} \mathrm{Mo}_{2} \mathrm{Co}_{2}(\mathrm{CO})_{2} \mathrm{~S}_{3}(\mathrm{PhCCH})$ which, in a second step, adds another equivalent of phenylacetylene to give $\mathrm{Cp}_{2}^{\prime} \mathrm{Mo}_{2}-\mathrm{Co}_{2}(\mathrm{CO})_{2} \mathrm{~S}_{3}(\mathrm{CPhCHCHCPh})$ in which the two alkynes are coupled to give a cyclopentadiene unit [38]. On a Ru_{\downarrow} netal core, diphenylacetylene can be coupled to give a C_{8} hydrocarbyl: The cluster $\mathrm{Ru}_{+}(\mathrm{CO})_{8}\left(\mu_{+}-\right.$

[^0]$\mathrm{PPh})\left[\eta^{\prime}, \eta^{1}, \eta^{2}, \eta^{2}-(\mathrm{Ph}) \mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}-\eta^{4}-\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})-\right.$ $\mathrm{C}(\mathrm{Ph})]$ is formed from the reaction of $\mathrm{Ru}_{4}(\mathrm{CO})_{13}\left(\mu_{3}-\right.$ PPh) with $\mathrm{C}_{2} \mathrm{Ph}_{2}$ [39].

In the preceding publication [40], we reported the reaction of the electron-deficient cluster ($\mu_{2}-$ $\mathrm{H}) \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (1) with non-functional alkynes to give various types of vinyl complexes. In an effort to gencralize this concept, we extended this reaction also to functional alkynes. In this paper, we report the reaction of 1 with $\mathrm{PhC} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)$ to give Ru_{3} clusters containing C_{+}hydrocarbyl ligands resulting from the carbon-carbon coupling of two alkyne units.

2. Results

> 2.I. Reaction of $\left.\left(\mu_{2}-H\right) \mathrm{Ru}_{3}(\mathrm{CO})_{9} I \mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (1) with $\mathrm{PhC} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{+}-\mathrm{p}-\mathrm{NO} O_{2}\right)$

The thermal reaction of the electron-deficient cluster ($\left.\mu_{2}-\mathrm{H}\right) \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{NS}(\mathrm{O})-\mathrm{MePh}\right]$ (1) and the alkyne

Table 1
IR and NMR data of the complexes 2-4

Complexes	$v_{\mathrm{CO}}\left[\mathrm{cm}^{-1}\right]$	$\delta\left({ }^{\prime} \mathrm{H}\right)$ [ppm$]$
$2{ }^{\text {a }}$	2070(vs), 2048(s), 2008(s)	$2.94\left(\mathrm{CH}_{3}\right)$ s: $7.09-8.54\left(\mathrm{C}=\mathrm{C}(\mathrm{Ph}) \mathrm{H}^{\text {and }} \mathrm{C}_{6} \mathrm{H}_{5}\right)$
3^{4}	2080 mm , 2040(vs). $2011(\mathrm{vs})$, 1974(m). $1805(\mathrm{w})$	$2.98\left(\mathrm{CH}_{3} \mathrm{~s}: 7.08-8.54\left(\mathrm{C}=\mathrm{C}(\mathrm{Ph}) \mathrm{H}^{2}\right.\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$
$4 \mathrm{a}+4 \mathrm{~b}^{\text {b }}$	2065(vw), 2057(w), 2039(s), 2015(s). 2005(sh). 1988(m), 1950(m), 1828(w)	3.192. $3.348\left(\mathrm{CH}_{3}\right) \mathrm{s}$: 6.015, 6.237 ($\mathrm{C}=\mathrm{CHPh}$ or $\mathrm{C}=\mathrm{C} H\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right) \mathrm{s}, 6.60-8.00\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right) \mathrm{m}$

${ }^{4} \mathrm{In} \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{n}$ In cyclohexane solution.
${ }^{\text {' In a }} \mathrm{CDCl}_{3}$ solution.
$\mathrm{PhC}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)$, containing an electronwithdrawing group in one of the two aromatic substituents. affords in refluxing THF the two C_{4}-hydrocarbyl clusters $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\eta^{3}-\mathrm{PhCCCC}(\mathrm{H}) \mathrm{Ph}\right]\left[\mu_{2}-\right.$ $\mathrm{NS}(\mathrm{O}) \mathrm{MePh}]$ (2) and $\mathrm{Ru}_{3}\left(\mu_{2} \quad . \mathrm{CO}\right)_{7}\left[\mu_{3}-\eta^{3}-\mathrm{PhC}-\right.$
$\mathrm{CCC}(\mathrm{H}) \mathrm{Ph}]\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (3). The reaction solution also contains the two isomeric vinyl complexes $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)_{2}(\mathrm{CO})_{6}\left[\mu_{2}-\eta^{2}-\mathrm{PhCC}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right]\left[\mu_{3}-\right.$ $\mathrm{NS}(\mathrm{O}) \mathrm{MePh}]$ (4), which are presumably intermediates in the formation of 2 and 3 . The products 2,3 and "can

(4a) and (4b)
Scheme 1.
be separated from the reaction mixture by thin-layer chromatography - however, 4 does not resolve into the two isomers $\mathbf{4 a}$ and $\mathbf{4 b}$ clearly distinguishable in the NMR spectrum of 4 .

Compounds 2. 3 and 4 were characterized by their analytical and spectroscopic data, 2 and 3 also gave suitable crystals for X-ray structure analysis. The IR spectrum of 2 exhibits three $v_{\text {co }}$ absorptions corresponding to only terminal CO ligands, whereas the IR spectrum of 3 presents four bands assigned to the terminal CO ligands and one absorption at $1805 \mathrm{~cm}^{-1}$ which can be attributed to the bridging CO group (Table 1). The ${ }^{1} H$ NMR spectra of both 2 and 3 are very similar, showing the same pattern of signals but differing in the chemical shifts, in accordance with the molecular structures of 2 and 3 (Table 1).

The constitution of 4 is proposed on the basis of the spectroscopic and analytical data: In the FAB mass spectrum, the molecular peak is found at $m / z 908$ (${ }^{102} \mathrm{Ru}$); in addition a complete fragmentation series corresponding to the subsequent loss of eight CO ligands is observed, all ions presenting the characteristic Ru_{3} isotope pattern. The infrared spectrum of 4 (Table 1) displays a v_{co} pattern almost identical to that of the vinyl cluster $\mathrm{Ru} u_{3}\left(\mu_{2}-\mathrm{CO}\right)_{2}(\mathrm{CO})_{6}\left[\mu_{3}{ }^{-}\right.$ $\mathrm{NS}(\mathrm{O}) \mathrm{MePh}]\left(\mu_{2}-\eta^{1}, \eta^{2}-\mathrm{PhCH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)$ characterized by X-ray crystallography (Ref. [40], see preceding paper); we therefore assign the absorption at $1828 \mathrm{~cm}^{-1}$
to two bridging carbonyl ligands, being located over the two ruthenium-ruthenium bonds which are not bridged by the vinyl ligand. The ${ }^{\prime} H$ NMF spectrum of 4 (Table 1) clearly reveals the presence of two isomers by two signals for the vinyl hydrogen ($\delta 6.015$ and 6.237 ppm) and two signals for the methyl substituent on the sulfur atom ($\delta 3.192$ and 3.348 ppm). This is also reflected in the ${ }^{13} \mathrm{C}$ NMR spectrum of 4 which shows the signals for the methyl substituent on the suifur atom ($\delta 45.6$ and $48.4 \mathrm{ppm})$ and two singlets at $\delta 67.8$ and 72.0 ppm for the alkenyl carbon atoms $(\mathrm{C}=\boldsymbol{C H})$.

We interpret these findings by the presence of two isomers which differ only in the orientation of the $\mu_{2}-\eta^{2}$-vinyl ligand: $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)_{2}(\mathrm{CO})_{6}\left[\mu_{2}-\eta^{2}-\right.$ $\left.\mathrm{PhCC}(\mathrm{H})-\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right]\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right](4 a)$ and $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)_{2}(\mathrm{CO})_{6}\left[\mu_{2}-\eta^{2}-\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right) \mathrm{CC}(\mathrm{H}) \mathrm{Ph}\right]-$ [$\mu_{3}-\mathrm{NS}(\mathrm{O})-\mathrm{MePh}$] (4b) (Scheme 1), but it is not possible to assign the NMR signals unambiguously to $\mathbf{4 a}$ or 4b.

2.2. Molecular structure of $R u_{3}(C O)_{9}\left[\mu_{3}-\eta^{3}-\right.$ PhCCCC $\left.(H) P h / / \mu_{2}-N S(O) M e P h\right]$ (2)

The molecular structure of 2 was confirmed by a single crystal X-ray structure analysis. Suitable crystals of 2 were grown at $4^{\circ} \mathrm{C}$ from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane. The unit cell contains two independent

Fig. 1. ORTEP plot of 2 (Molecule A). Thermal ellipsoids are draw: at 40\% of probability.
molecules of 2 which have the same constitution but differ in bond angles and bond lengths. The structure of the two molecules of 2 is presented in Figs. 1 and 2. Selected bond lengths and angles of the two molecules are listed in Table 2.

The organic fragment arising from the $\mathrm{C}-\mathrm{C}$ coupling of two alkyne units is best described as a butenynyl ligand $\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$. Each of the three ruthenium atoms are bonded to three terminal CO groups. The nitrogen cap is bridging only the two ruthenium atoms $R u(1)$ and $R u(3)$ in a μ_{2}-fashion $[R u(1)-N$ 2.166(5); Ru(3)-N 2.161(5) \AA], in contrast to 1 where the nitrogen links the three metal centers in a μ_{3}-mode. We also observe that in 2 the nitrogen-sulfur double bond is shorter $[\mathrm{N}(1)-\mathrm{S}(1) 1.514(5) \mathrm{A}]$ than in $1[\mathrm{~N}-\mathrm{S}$ 1.566(7)], probably due to the coordination to only two metal atoms, the NS(O)MePh ligand still being a threeelectron donor ligand. The C_{4} ligand is coordinated to the Ru_{3} framework by only three carbon atoms and acts as a five-electron ligand (Figs. 1 and 2). The carboncarbon double bond of the vinyl part of the C_{4} ligand is not involved in the coordination. The carbon atom $C(8)$ is σ-bonded to $\mathrm{Ru}(2)[\mathrm{Ru}(2)-\mathrm{C}(8) 2.095(6) \AA$] and donates one electron, whereas the $\mathrm{C}(9)-\mathrm{C}(\mathrm{i} 0)$ triple bond is π-bonding to both, $\mathrm{Ru}(1)$ and $\mathrm{Ru}(3)[\mathrm{Ru}(1)-\mathrm{C}(9)$ 2.339(5); Ru(1)-C(10) 2.234(6); Ru(3)-C(9) 2.326(6); $\mathrm{Ru}(3)-\mathrm{C}(10) 2.202(5)]$ and acts as a four-electron donor. Compound 2 can be compared to $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}\right.$ -

Table 2
Selected bond lengths [\AA] and bond angles [deg] for 2

Molecule A		Molecule B	
C(7)-C(8)	1.328(8)	C(46)-C(47)	$1.339(8)$
C(7)-H(7)	$0.98(6)$	$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	0.99(5)
C(8)-C(9)	1.394(8)	C(47)-C(48)	$1.383(8)$
$\mathrm{C}(8)-\mathrm{Ru}(2)$	$2.09516)$	$\mathrm{C}(47)-\mathrm{Ru}(6)$	$2.082(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.350(8)$	C(48)-C(49)	1.341 (8)
$\mathrm{C}(9)-\mathrm{Ru}(2)$	$2.197(6)$	$\mathrm{C}(48)-\mathrm{Ru}(6)$	$2.207(6)$
C(9)-Ru(3)	$2.326(6)$	$\mathrm{C}(48)-\mathrm{Ru}(4)$	$2.342(6)$
C(9)-Ru(1)	$2.339(5)$	$\mathrm{C}(48)-\mathrm{Ru}(5)$	$2.358(6)$
C(10)-C(11)	1.468(7)	$\mathrm{C}(49)-\mathrm{C}(50)$	$1.483(8)$
$\mathrm{C}(10)-\mathrm{Ru}(3)$	$2.202(5)$	C(49)-Ru(5)	$2.187(6)$
$\mathrm{C}(10)-\mathrm{Ru}(1)$	$2.234(6)$	C(49)-Ru(4)	$2.212(6)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.8644(7)$	$\mathrm{Ru}(4)-\mathrm{Ru}(6)$	$2.8570(7)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.9030(7)$	$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$2.8908(8)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$3.1703(2)$	$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	3.1654(2)
$\mathrm{O}(1)-\mathrm{S}(1)$	$1.462(5)$	O(2)-S(2)	1.461(5)
$\mathrm{N}(1)-\mathrm{S}(1)$	1.514(5)	$\mathrm{N}(2)-\mathrm{S}(2)$	$1.516(5)$
M(1)-Ru(3)	$2.161(5)$	$\mathrm{N}(2)-\mathrm{Ru}(5)$	$2.163(5)$
N(1)-Ru(i)	$2.166(5)$	$\mathrm{N}(2)-\mathrm{Ru}(4)$	$2.170(5)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$	$129.2(6)$	$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	134.4(6)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	133.5(5)	C(49)-C(48)-C(47)	162.0(6)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	158.4(6)	$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	130.5(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	131.7(5)	$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(49)$	122.0(6)

Estimated standard deviations in parentheses.
$\mathrm{H}_{2} \mathrm{CC} \equiv \mathrm{C}-\mathrm{Me}$), which is the only complex presenting the same CCC coordination mode, according to the interpretation of the spectroscopic data, since no crystal

Fig. 2. ORTEP plot of 2 (Molecule B). Thermal ellipsoids are drawn at 40% of probability.
structure analysis is available [41]. The short distance between $\mathrm{Ru}(2)$ and $\mathrm{C}(9)[\mathrm{Ru}(2)-\mathrm{C}(9) 2.1972(1) \AA]$ is presumably due to a geometric arrangement of the C_{t} chain with respect to the Ru_{3} core. This description of the C_{4} ligand as a σ, π, π-donor is however, an oversimplification because of the mixing of the σ and π contributions of each metal-ligand interaction [42,43].

The electron count of 2 being 50 e is in accordance with an open \mathbf{M}_{3} triangle. We therefore consider the $R u(1) \cdots R u(3)$ vector as an open edge, even if the distance is shorter $[\operatorname{Ru}(1) \cdots \operatorname{Ru}(3) 3.1703(2) \AA$) than in open Ru_{3} clusters (average $\mathrm{Ru} \cdots \mathrm{Ru} 3.430 \AA$). The $\mathrm{C}(8) \mathrm{C}(9) \mathrm{C}(10)$ angle is $158.4^{\circ}(6)$, confirming the description of a butenynyl fragment; for a allenyl (butatrienyl) moiety, the average CCC angle is normally between $138^{\circ}(2)$ and $152^{\circ}(1)$ [42].
2.3. Molecular structure of $\mathrm{Ru}_{3}\left(\mu_{2}-\mathrm{CO}\right)(\mathrm{CO})_{7} / \mu_{3}-\eta^{3}-$ $\mathrm{PhCCCC}(\mathrm{H}) \mathrm{Ph} /\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh} /\right.$ (3)

The molecular structure of 3 was confirmed by a X-ray structure analysis of a suitable crystal obtained by room temperature crystallization from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane. The molecular structure of $\mathbf{3}$ is depicted in Fig. 3, selected bond lengths and angles are presented in Table 3.

The three ruthenium atoms in 3 form an open trian-

Table 3
Selected bond lengths [Ả] and bond angles [deg] for 3

$\mathrm{C}(8)-\mathrm{C}(9)$	$1.407(5)$	$\mathrm{N}(1)-\mathrm{Ru}(1)$	$2.129(3)$
$\mathrm{C}(8)-\mathrm{C}(11)$	$1.497(5)$	$\mathrm{N}(1)-\mathrm{Ru}(3)$	$2.165(3)$
$\mathrm{C}(8)-\mathrm{Ru}(3)$	$2.227(4)$	$\mathrm{N}(1)-\mathrm{Ru}(2)$	$2.228(3)$
$\mathrm{C}(8)-\mathrm{Ru}(1)$	$2.314(4)$	$\mathrm{O}(1)-\mathrm{S}$	$1.445(3)$
$\mathrm{C}(8)-\mathrm{Ru}(2)$	$2.319(4)$	$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.7164(5)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.236(6)$	$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.8290(5)$
$\mathrm{C}(9)-\mathrm{Ru}(3)$	$2.099(4)$	$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$3.4324(3)$
$\mathrm{C}(9)-\mathrm{Ru}(2)$	$2.250(4)$		
$\mathrm{C}(10)-\mathrm{C}(17)$	$1.326(6)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(11)$	$121.1(3)$
$\mathrm{C}(10)-\mathrm{Ru}(2)$	$2.286(4)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$139.7(4)$
$\mathrm{C}(17)-\mathrm{H}(17)$	$0.9954)$	$\mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(9)$	$150.5(4)$
$\mathrm{N}(1)-\mathrm{S}$	$1.554(3)$	$\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{C}(18)$	$122.4(4)$

Estimated standard deviations in parentheses.
gle $[\mathrm{Ku}(1)-\mathrm{Ru}(2) 2.7164(5) ; \mathrm{Ru}(1)-\mathrm{Ru}(3) 2.8290(5)$; $\mathrm{Ru}(2) \cdots \operatorname{Ru}(3) 3.4324(3) \AA$], all ruthenium-ruthenium distances being different. Two of the three ruthenium atoms, $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$, are bonded to two terminal CO groups, whereas $R u(3)$ is bonded to three terminal CO ligands. A carbonyl group bridges the $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ edge and lies in the same plane as the metal framework (dihedral angle 175.7°). The position of the carbonyl ligand is not symmetrical between both ruthenium atoms, and $C(29)$ is cioser to $R u(1)$ than to $R u(2)[R u(1)-C(29)$

Fig. 3. ORTEP plot of 3. Thermal ellipsoids are drawn at 40% of probability.
2.0208(2); Ru(2)-C(29) 2.1199(2) A]. We also observed that the nitrogen cap is asymmetrically coordinated to the Ru_{3} core, all the $\mathrm{Ru}-\mathrm{N}$ bond lengths being different [Ru(1)-N 2.129(3); Ru(2)-N 2.228(3); Ru(3)N $2.165(3) \AA$ A].

The coordination of the C_{4} fragment in $\mathbf{3}$ is different from that in 2, inasmuch as it is best described as butatrienyl ligand $\mathrm{PhC}=\mathrm{C}=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$, although it also acts as a 5 e -donor and it is also coordinated by three carbon atoms. The double bond $\mathrm{C}(10)=\mathrm{C}(17)$ does not interact with any ruthenium as in $2[\mathrm{Ru}(1)-\mathrm{C}(17)$ 5.5385(5); $\mathrm{Ru}(2)-\mathrm{C}(17) \mathrm{3.3886}(4) ; \mathrm{Ru}(3)-\mathrm{C}(17)$ $4.2806(5)$ A A . In a first approximation, we can consider the C_{4} ligand to be σ-bonded by $\mathrm{C}(8)$ to $\mathrm{Ru}(1)$ and $\mathrm{Ru}(2)$ ('shared σ-bond') [Ru(1)-C(8) 2.3136(2); $\AA(2)-C(8) 2.3186(2) \AA]$ and π-bonded by $\mathrm{C}(8)=\mathrm{C}(9)$ to $\mathrm{Ru}(3)[\mathrm{Ru}(3)-\mathrm{C}(8) 2.2275(2) ; \mathrm{Ru}(3)-\mathrm{C}(9) 2.0989(3)]$, and π-bonded by $\mathrm{C}(9)=\mathrm{C}(10)$ to $\mathrm{Ru}(2)[\mathrm{Ru}(2)-\mathrm{C}(9)$ 2.2501(2); Ru(2)-C(10) 2.2857(3)]. A comparison of the butatrienyl ligand in 3 with allenyl complexes such as $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\eta^{3}-\operatorname{EtCCC}(\mathrm{H}) \mathrm{CH}_{3}\right]$ [44] or $\mathrm{Ru}_{3}(\mathrm{CO})_{8}\left[\mu_{3}-\eta^{3}-\mathrm{CH}_{2} \mathrm{CC}\left({ }^{i} \mathrm{Pr}\right)\right]\left(\mu_{2}-\mathrm{PPh}_{2}\right)$ [45] reveals the $\mathrm{C}(8) \mathrm{C}(9) \mathrm{C}(10)$ angle of $139.7^{\circ}(4)$ to be similar to the corresponding allenyl angles of $143.7^{\circ}(3)$ [45] or $142.3^{\circ}(6)$ [44].

3. Discussion

Despite the different coordination of the C_{4} ligand in 2 and 3, the nature of the C_{4} hydrocarby! fragment is the same. The two ligands can in fact be considered as two mesomeric representations of the same hydrocarbyl radical.
$\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph} \leftrightarrow \mathrm{Ph}-\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$
In both, 2 and 3, the C_{\downarrow} hydrocarbyl ligand is coordinated to the Ru_{3} framework by only three carbon atoms, the $\mathbf{C =} \mathbf{C}(\mathrm{H}) \mathrm{Ph}$ double bond of the ligand is not interacting with a metal atom. The main difference between clusters 2 and $\mathbf{3}$ is the electron-deficient character of $\mathbf{3}$ (48e), while 2 is electron-precise comprising 50e.

It is interesting to note that the C_{4} hydrocarbyl ligands in 2 and 3. formed by a carbon-carbon coupling of two C_{2} units, can obviously not be generated from the corresponding C_{4} hydrocarbon. The reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with the enyne $\mathrm{PhC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$ leads to the formation of three isomeric binuclear complexes $\mathrm{Ru}_{2}(\mathrm{CO})_{6}\left[\mathrm{C}_{4} \mathrm{Ph}_{2}(\mathrm{CH}=\mathrm{CHPh})_{2}\right]$ as well as to two trinuclear clusters $\mathrm{Ru}_{3}(\mathrm{CO})_{6}(\mu-\mathrm{CO})_{2}\left[\mathrm{C}_{4} \mathrm{Ph}_{2}(\mathrm{CH}=\mathrm{CHPh})_{2}\right]$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{8}\left[\mu_{3}-\eta^{1^{\prime}}, \eta^{1}, \eta^{4}, \eta^{2}-\mathrm{C}_{4} \mathrm{Ph}_{2}(\mathrm{CH}=\mathrm{CHPh})_{2}\right]$, none of which contains a C_{\downarrow} hydrocarbyl ligand [46].

The isolation and characterisation of the vinyl complex 4 (two isomers 4 a and 4b) from the reaction mixture would suggest that the $\mathrm{C}-\mathrm{C}$ coupling of the two
alkyne units on the Ru_{3} core implies insertion of the alkyne into the ruthenium-hydrido bond in 1 to give a vinyl complex followed by the coordination of a second alkyne to give an alkyne-vinyl complex in which the $\mathrm{C}-\mathrm{C}$ coupling takes place. However, the reaction of 4 (isomer mixture) with para-nitrotolane under the same reaction conditions did not yield 2 or 3 . We therefore rule out the intermediacy of $\mathbf{4 a}$ or $\mathbf{4 b}$ in the formation of 2 and 3.

4. Experimental

Al^{\prime} manipulations were carried out in a nitrogen atmosphere, using standard Schlenk techniques. The organic solvents were destilled over appropriate drying agents [47], saturated with nitrogen prior to use. The NMR spectra were recorded using a Varian Gemini 200 BB instrument or a Bruker AMX 400 at 297 K. The IR spectra were recorded using a Perkin-Elmer FTIR 1720X spectrophotometer ($4000-400 \mathrm{~cm}^{-1}$). Microanalytical data were obtained from the Mikroelementaranalytisches Laboratorium der ETH Zürich. The mass spectrum was recorded by Professor T.A. Jenny, University of Fribourg (Switzerland). The starting compounds ($\mu_{2}-$ $\mathrm{H}) \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (1) [48] and $\mathrm{PhC}=\stackrel{\mathrm{C}}{\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right) \text { were synthesized according to }}$ published methods [49]. Methyl phenyl sulfoximine (racemate) was obtained from Professor Carsten Bolm, RWTH Aachen (Germany).

> 4.I. Reaction of $\left(\mu_{2}-H\right) \mathrm{Ru}_{1}(\mathrm{CO})_{9} / \mu_{5}-\mathrm{NS}(O) \mathrm{MePh} /$ (I) with $\left.\mathrm{PhC}=\mathrm{C}\left(\mathrm{C}_{6}^{\prime} \mathrm{H}_{+}-\mathrm{p}-\mathrm{NO}\right)_{2}\right)$

A solution of ($\left.\mu_{2}-\mathrm{H}\right) \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{NS}(\mathrm{O}) \mathrm{MePh}\right]$ (1) ($200 \mathrm{mg}, 0.28 \mathrm{mmol}$) and $\mathrm{PhC} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)(188$ $\mathrm{mg}, 0.84 \mathrm{mmol}$) in THF (40 ml) was heated in a pressure Schlenk tube to $50^{\circ} \mathrm{C}$ for 6 h . After evaporation of the solvent the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated by thin-layer chromatography (first: aluminum oxide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 1:1; second: silica gel $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane 1:1). From the first main band (red) 2 was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $4^{\circ} \mathrm{C}, 3$ was extracted from the second main band (red-orange) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at room temperature. The third main band (orange) contained 4 as the isomer mixture $4 \mathbf{a}$ and $\mathbf{4 b}$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and obtained as a brownish powder. All compound were dried in vacuo. 2: yield $36 \mathrm{mg}, 14 \%$. Anal. Found 2: C, 43.94; H, 2.22; N, 1.78. $\mathrm{C}_{32} \mathrm{H}_{19} \mathrm{NO}_{10} \mathrm{SRu}_{3}\left(0.5 \mathrm{C}_{6} \mathrm{H}_{14}\right)$, Calc. C, 43.98; H, 2.74; N, 1.47\%. 3: yield 27 mg , 11%. Anal. Found 3: C, 45.34; H, 2.95; N, 1.53. $\mathrm{C}_{31} \mathrm{H}_{19} \mathrm{NO}_{9} \mathrm{SRu}_{3}\left(0.75 \mathrm{C}_{6} \mathrm{H}_{14}\right)$, Calc. C, $45.33 ; \mathrm{H}, 2.95$; N. 1.47%. 4: yield $17 \mathrm{mg} .7 \%$. Anal. Found 4: C, 44.34;

Table 4
Crystallographic and refinement data for 2, 3

Compound	2	3
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{19} \mathrm{NO}_{11} \mathrm{Ru}_{3} \mathrm{~S}$	$\mathrm{C}_{31} \mathrm{H}_{19} \mathrm{NO}_{9} \mathrm{Ru}_{3} \mathrm{~S} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	912.79	969.71
Temperature (K)	293(2)	293(2)
Crystal system	monoclinic	monoclinic
Space group	P21/a	P2, $/ 1$
$a, b, c(\AA)$	19.649(2), 29.004(2), 11.7751(8)	10.0921(11), 16.326(2),21.525(3)
$\left.\alpha, \beta, \gamma{ }^{(}\right)$	90, 90.026(7), 90	90,99.763(12), 90
Volume (A^{3})	$6710.5(10)$	3495.1(7)
Z	8	4
$D_{\text {calk }} / \mathrm{g} \mathrm{cm}^{-3}$	1.807	1.843
Absorption coefficient (Mo K α, mm^{-1})	1.306	1.397
$F(000)$	$\bigcirc 568$	1896
Crystal size	$0.57 \times 0.53 \times 0.30$	$0.53 \times 0.30 \times 0.30$
θ Scan range (${ }^{\circ}$)	2.07 to 2.5 .50	2.11 to 25.52
h, k, I ranges	-23 to 23, 0 to 35, 0 to 14	-12 to 12, 0 to 19.0 to 26
Reflections collected	12476	6517
Independent reflections	12476	6517
Reflections observed [$I>2 \sigma(1)$]	10047	5833
Data/restraints/parameters	12473/0/936	6510/0/455
Goodness of fit on F^{2}	1.155	1.144
Final R indices [$I>2 \boldsymbol{r}(I)$]	$R 1=0.0492, u \cdot R 2=0.0856$	$R 1=0.0322, w R 2=0.0742$
R indices (all data)	$R 1=0.0691, ~ u \cdot R 2=0.0930$	$R 1=0.0386, w R 2=0.0804$
Largest diff. peak and hole (e \AA^{3})	1.054 and - 0.473	0.885 and -0.444
Empirical absorption correction	DIFABS	-
Transmission factors: min/max	0.758/1.156	-

H, 3.27; N, 2.91. $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{SRu}_{3}\left(1.5 \mathrm{C}_{6} \mathrm{H}_{14}\right)$, Calc. C, 44.92; H, 3.57; N, 2.75\%. Mass spectrum (FAB) $m / \approx: 4908\left(\mathrm{M}^{+}\right)\left({ }^{102} \mathrm{Ru}\right)$.

4.2. X-ray structure analysis of 2 and 3

Suitable crystals of 2,3 , were obtained as indicated in Section 4. Intensity data were collected on a StoeSiemens AED2 4-circle diffractometer at room temperature ($\mathrm{Mo}-\mathrm{K}_{c}$ graphite monochromated radiation, $\lambda=$ $0.71073 \AA ; \omega / 2 \theta$ scans). Table 4 summarizes the crystallographic and selected experimental data for 2 and 3. The structures were solved by direct methods using the program SHELXS-86 [50]. The refinement, using weighted full matrix least-square on F^{2}, was carried out using the program SHELXL-93 [51]. Fur 2, an empirical absorption correction was applied using [DIFABS] [52]. Complex 3 crystallizes with a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per unit cell. The hydrogen atoms of the C_{4} hydrocarbyl chains of 2 and 3 were located from difference maps and refined isotropically. The methyl, and phenyl hydrogens of 2 and 3 were included in calculated positions and refined as riding atoms using the SHELXL 93 default parameters. The figures were drawn with ZORTEP [53] (thermal ellipsoides, 40% probability level). Full tables of atomic parameters and bond lengths and angles may be obtained from the Cambridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 IEZ (UK) on quoting the full journal citation.

Acknowledgements

Financial support of this work by the Swiss National Science Foundation and a generous loan of ruthenium(III) chloride hydrate from the Johnson Matthey Research Centre are gratefully acknowledged. We thank Professor Michael I. Bruce, University of Adelaide, for valuable discussions.

References

[1] S.A.R. Knox. J. Cluster Sci. 3 (1992) 38.5.
[2] E. Sappa, J. Cluster Sci. 5 (1994) 211.
[3] E.L. Muetterties, T.N. Rhodin, E. Band. C.F. Brucker, W.R. Pretzer, Chem. Rev. 79 (1979) 91.
[4] E.L. Muetterties, Angew. Chem.. Int. Ed. Engl. 17 (1978) 545.
[5] J. Evans, J. Chem. Soc. Rev. (1981) 159.
[6] K.J. Adams, J.J. Barker, S.A.R. Knox, A.G. Orpen, J. Chem. Soc., Dalton Trans. (1996) 975.
[7] J.F. Corrigan, N.J. Taylor, A.J. Carty, Organometallics 13 (1994) 3778.
[8] J.F. Corrigan, S. Doherty, N.J. Taylor, A.J. Carty. Organometallics 12 (1993) 1365.
[9] H. Matsuzaka, Y. Hirayama, M. Nishio, Y. Mizobe, M. Hidia, Organometallics 12 (1993) 36.
[10] S. Aime, G. Gervasio. L. Milone, E. Sappa. Inorg. Chim. Acta 27 (1978) 145.
[11] R. Yanez, N. Lugan, R. Mathien. Organometallics 9 (1990) 2998.
[12] R.D. Adams. J.E. Babin, M. Tasi, J.-G. Wang, Organometallics 7 (1988) 755.
[13] Yun Chi, Der-Kweng Hwang. Shen-Feng Chen. Ling-Kang Liu. J. Chem. Soc.. Chem. Commun. (1989) 1540.
[14] E. Sappa, A.M. Manotti-Lanfredi. G. Predieri. A. Tiripicchio. Inorg. Chim. Acta 61 (1982) 217.
[15] E. Sappa, A.M. Manotti-Lanfredi. G. Predieri, A. Tiripicchio. Inorg. Chim. Acta 42 (1980) 255.
[16] O. Gambino. E. Sappa. A.M. Manotti-Lanfredi. A. Tiripicchio. Inorg. Chim. Acta 36 (1979) 189.
[17] F. Muller, I.M. Han. G. Van Koten. K. Vrieze, Inorg. Chim. Acta 158 (1989) 81.
[18] S.A.R. Knox, R.F.D. Stanstield. F.G.A. Stone, M.J. Winter. P. Woodward. J. Chem. Soc., Dalton Trans. (1982) 173.
[19] R.B. King. G.W. Eavenson. J. Organomet. Chem. 42 (1972) C 95.
[20] F. Muller. G. van Koten. L.H. Polm. K. Vrieze. M.C. Zoutberg, D. Heijdenrijk, E. Kragten. C.H. Stam, Organometallics 8 (1989) 1340.
[21] S. Rivomanana. C. Mongin. G. Lavigne, Organometailics 15 (1996) 1195.
[22] G. Gervasio. E. Sappa. A.M. Manotti-Lanfredi. A. Tiripicchio. Inorg. Chim. Acti 68 (1983) 171.
[23] R.B. King, A. Efraty. J. Am. Chem. Soc. 94 ([972) 302I.
[24] R.B. King, I. Haiduc. C.W. Eavenson. J. Am. Chen. Soc. 95 (1973) 2508.
[25] T. Rukachaisirikul, S. Arabi, F. Hartstock, N.J. Taylor, A.J. Carty. Organometallics 3 (1984) 1587.
[26] A.A. Koridze. A.I. Yanovsky. Y.T. Struchkov. J. Organomet. Chem. 441 (1992) 277.
[27] M.V. Capparelli. Y. De Sanctis, A.J. Arce. Acta Crystallogr. C $51(1995) 1819$.
[28] M.I. Bruce, P.A. Humphrey, E. Horn, E.R.T. Tickink. J. Organomet. Chem. 429 (1ソ92) 207.
[29] S. Jeannin, Y. Jeannin. F. Robert. C. Rosenberg, Inorg. Chem. 3.3 (1994) 24.3.
[30] A.J. Edwards, N.E. Lealbeater, J. Lewis, P. Raithby. J. Chem. Soc., Dilton Trams. (1095) 3785.
[31] A.A. Korida, N.M. Astakhova, F.M. Dolgushin, A.I. Yanovisy, Yu.T. Struchkov, P.V. Petrovskii. Organometallics it (IV95) 2167.
[32] F. Muller, D.I.P. Dijkhuis, G. van Koten, K. Vriese, D. Heijdrenrijk. M.A. Rotteveel, C.H. Stam. M.C. Zoutberg, Organometallics $8(1989) 992$.
[3.3] M. Green, P.A. Kile, R.J. Mercer. J. Chem. Soc.. Chem. Commun. (1987) 375.
[34] A.A. Koridze, O.A. Kizas, N.E. Kolohova, V.N. Vinogradova, N.A. Ustynyuk, P.U. Petrovskii, A.I. Yanovsky, Y.T. Struchkov, J. Chem. Soc.. Chem. Commun. (1984) 1158.
[35] M.I. Bruce. P.A. Humphrey. H. Miyamae. B.W. Skleton. A.H. White, J. Organomet. Chem. 429 (1992) 187.
[36] J.A. Beck. S.A.R. Knox. R.F.D. Stansfield, F.G.A. Stone, M.J. Winter, P. Woodward, J. Chem. Soc., Dalton Trans. (1982) 195.
[37] A.M. Boileau. A.G. Orpen, R.F.D. Stansfield, P. Woodward, J. Chem. Soc.. Dalton Trans. (1982) 187.
[38] U. Riaz. M.D. Curtis, A. Rheingold. B.S. Haggerly. Organometallics 9 (1990) 2647.
[39] J.F. Corrigan. S. Doherty, N.J. Taylor. A.J. Carty, Organometallics II (1992) 3160.
[40] V. Ferrand. Kurt Menweiler, Gerd Rheinwald, Helen StoeckliEvans, Georg Siiss-Fink, J. Orgamomet. Chem., preceeding paper.
[41] A.J. Deeming. S. Hasso, M. Underhill, J. Chem. Soc., Dalton Trans. (1975) 1614.
[42] A. Wojeichi, J. Cluste: Sci. \ddagger (1993) 54.
[43] G. Granozi. E. Tondello. R. Bertoncello. S. Aime. D. Osella, Inorg. Chem. 24 (1985) 570.
[4+] G. Gervasio. D. Osella, M. Valle, Inorg. Chem. 15 (1976) 1221.
[45] D) Nucciarone, S.A. MacLaughlin, N.J. Taylor, A.J. Carty, Organometallics 7 (1988) 106.
[46] A.A. Koridze, V.I. Z.danovich. N.V. Andrievskaya. Yu. Siromakhova. P.V. Perrovskii. M.G. Ezernitskaya, F.M. Dolgushin, A.I. Yanowshy. Yu.T. Struchkov, Russ. Chem. Bull. 45 (1996) 1200 .
[47] D.D. Perrin. W.L.F. Armarego, Purification of laboratory chemicals, 3rd edn., Pergamon. Oxford. Elmsford. NY. 1988.
[+8] G. Süss-Fink, G. Rheinwald, H. Stoeckli-Evans, C. Bolm, D). Kiufmann, Inorg. Chem. 35 (1996) 308I.
[10] R. Stephens, C. Castro. J. Org. Chem. 28 (I963) 3313.
[50] G.M. Sheldrick. Acta Crystalloge. A $46(1900)+67$.
[51] G.M. Sheldrich. SHELXL.-93. University 1, Gïttingen. Germiny, loc) 3.
[52] N. Walker, D. Stuart. Acta Crystallogr. A 40 (10)0) 1.55.
[53] C.K. Johmson. ORTEP, Oah Ridge National Labomatory. Oatk Ridge, TN, modified for PC' by L. Zsolnai and H. Pritakow. University of Heidelberg. Germiny (1094).

[^0]: * Corresponding author.

